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Monte Carlo simulations of the spin-4 Heisenberg 
antiferromagnet in two dimensions 

J D Regert, J A Riera and A P Young 
Physics Department, University of California, Santa Cruz, CA 95064, USA 

Received 1 August 1988 

Abstract. We describe the results of Monte Carlo simulations of the spin-: Heisenberg 
antiferromagnet on the honeycomb lattice. We find that the staggered magnetisation is non- 
zero and given, quite accurately, by spin-wave theory. Similar results have been found earlier 
for the square lattice. 

1. Introduction 

The relevant role that the Cu-0 planes play in the recently discovered high-T, super- 
conductors (Bednorz and Muller 1986, Wu eta1 1987) and the assumption that the pairing 
mechanism is associated with antiferromagnetic spin fluctuations (Anderson 1987, 
Baskaran et a1 1987, Emery 1987, Hirsch 1987, Ruckenstein et a1 1987) have raised 
interest in Hubbard and extended Hubbard models in two dimensions. In particular, 
the antiferromagnetic spin-4 Heisenberg model on a square lattice, which corresponds 
to the half-filled band limit of the Hubbard model, should give a good description of the 
magnetic properties of the related non-doped insulating materials, such as La2Cu0, 
(Shirane et aZ1987). With this motivation, there has been recently an extensive study of 
the ground state of the antiferromagneticHeisenberg model on two-dimensional lattices. 
As it is well known, the value of the ground-state staggered magnetisation, mi, is reduced 
from its Neel, or classical, value due to quantum mechanical fluctuations. In the spin- 
wave approximation (Anderson 1952, Kubo 1952, Oguchi 1960), this zero-point devi- 
ation is finite for any two-dimensional lattice, implying that a long-range order survives. 
On the other hand, Anderson (1987) has suggested that high-T, superconductors may 
be realisations of the resonant valence bond (RVB) state, originally proposed as the 
ground state of the spin-4 Heisenberg antiferromagnet on the triangular lattice. This has 
led to speculations that the ground state of this model on the square lattice may be an 
RVB state, in which case spin-wave theory would be qualitatively wrong in predicting a 
finite staggered magnetisation. 

Spin-wave theory is the first term in an expansion in powers of l/(zS), where S is the 
spin and z the coordination number, which is not small for spin-4 systems on two- 
dimensional lattices. It is therefore of interest to study the spin-l antiferromagnet on 
two-dimensional lattices by other techniques. Recent studies for the square lattice using 
t Present address: Institut fur Physik, Johannes-Gutenberg-Universitat, Postfach 3980, D-6500 Mainz, 
Federal Republic of Germany. 
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quantum Monte Carlo simulations (Reger and Young 1988, hereafter referred to as RY, 
Gross et a1 1988), diagonalisation of small systems (Tang and Hirsch 1988), and a 
reanalysis of a perturbation series (Huse 1988) all concur that there is long-range order 
and that the value of the staggered magnetisation is given fairly accurately by spin-wave 
theory. In addition, Kennedy et a1 (1988) have derived rigorous bounds which are not 
quite tight enough to prove long-range order in two dimensions for spin-t, though they 
do prove this for spin-1 and for a spin-i model with weak coupling between planes. 

If there is really long-range order in the ground state of the square lattice, it is, 
nonetheless, of interest to ask if the RVB state is the ground state of any unfrustrated 
two-dimensional lattice. Since corrections to spin-wave theory are largest for small 
coordination number, the RVB is more likely to be the ground state of the honeycomb 
lattice, which has z = 3, the smallest of any simple two-dimensional lattice. We have 
therefore applied the Monte Carlo techniques of RY to study the ground state of the 
spin4 antiferromagnet on the honeycomb lattice. We also present, in this paper, some 
further results on the square lattice which were not given in RY. Our principal result is 
that the staggered magnetisation is finite for both lattices with a value close to that 
predicted by spin-wave theory. 

2. Themodel 

The Hamiltonian that we consider is 

H = C. ui * uj (1) 
( i J )  

where the ui are Pauli spin operators on the sites of the lattice. The interactions run over 
nearest-neighbour pairs only and we have set the exchange constmt to unity. 

A simple argument following Anderson (1973) suggests that the RVB state is more 
likely to be the ground state of the honeycomb lattice than the square lattice. One 
compares the energy per spin of the Neel state, which is considered as the zeroth-order 
approximation to a long-range ordered state, with the energy of a valence bond (dimer) 
state, considered as the zeroth-order approximation to the RVB state. The energy of the 
Neel state is given by 

aE,eel = -&zS2. (2) 
The energy of the valence bond state (Anderson 1973), consisting of a dimer covering 
of the lattice with nearest-neighbour singlet pairs, is given by 

$EvB = -fS(S + 1) (3) 
for all lattices. Hence the NCel state is a better starting point than the VB state for the 
square lattice but the two states give the same energy for the honeycomb lattice. 

To carry out the simulations we mapped a honeycomb lattice of L2 hexagons into a 
square lattice of N = L x (2L) spins with missing bonds as shown in figure 1. Periodic 
boundary conditions were applied. This mapping allows us to use the same ‘world-line’ 
Monte Carlo algorithm (Suzuki 1976, Barma and Shastry 1978, Hirsch et aZ1982, Marcu 
1987) that RY used for the square lattice. In this algorithm one divides the Hamiltonian 
into two pieces, H 1  and H,, where H 1  and H 2  each incorporate the Hamiltonian of every 
fourth square, as shown in figure 1, in such a way that each bond on the lattice is included 
in either H 1  or H2.  The matrix elements of either H 1  or H 2  can be computed separately 
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Figure 1. (a) The honeycomb lattice. ( b )  The equivalent square lattice with missing bonds 
obtained by distorting (a) .  We also show the checkerboard break-up of the Hamiltonian into 
two pieces H I  (shaded) and H z  (striped). 

Figure2. The three-dimensional lattice on whichone simulates aneffective classical problem. 
The ‘time’ direction is vertical. At each lattice point there is a variable taking values 21, 
which indicates whether the spin is up or down. The statistical weight of a given configuration 
is the product of matrix elements of exp( -AzHsq), where Hss is the Hamiltonian of a single 
square with a missing bond, between the states of the top and bottom squares of the shaded 
cubes. H I  acts in the shaded cubes and H z  in the striped cubes, similar to figure 1. 

because they each split into Hamiltonians of non-interacting squares. Since HI and H 2  
do not commute, one uses the Trotter formula (Suzuki 1976) 

-PH2 exp(-P(H, + H,)) = lim 
m- m 

(4) 

where P = T’, to compute the partition function and expectation values. Inserting 
complete sets of eigenstates of Sz between the different factors, one sees that the partition 
function becomes that of a classical model in one higher dimension, with 2 m  ‘time slices’ 
in the ‘time’ or ‘Trotter’ direction. Periodic boundary conditions must be applied in this 
direction to represent the fact that a trace is being taken. At each site there is an 
Ising-like variable that takes values & 1 and describes whether the spin is up or down. 
Representing the three-dimensional lattice as in figure 2 ,  the statistical weight of a given 
spin configuration is simply the product of matrix elements of exp( - AzH,,) for each 
shaded cube, where AT = P/m and Hss is the Hamiltonian of a single square with a 
missing bond. 
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The expectation value of any operator, A ,  which conserves the total z-component of 
spin between the two time slices of a single cube, is given by 

where c denotes a configuration of the spins at all time slices, A, is the value of A in this 
configuration at any one time slice, and P, is the probability of a particular configuration. 
In the Monte Carlo method one takes a statistical sample of the spin configurations 
using standard techniques (see e.g. Binder 1984), which generate configurations with 
probability P,. Note that the Hamiltonian conserves the total magnetisation, M z ,  which 
is therefore the same at each time slice. The ground state, which is our principal interest, 
has M‘ = 0 so the simulation is restricted to this subspace. 

As discussed by RY, the elementary move is to flip the spins of the four interacting 
cubes that are nearest neighbours to a non-interacting cube, in such a way that M Z  is 
conserved. With just this move, however, the algorithm does not sample all con- 
figurations with M‘ = 0, so two other moves have been included. The first of these causes 
the ‘world-lines’ for two up spins, say, to twist around each other. The second, a non- 
local move, is included to generate states of different ‘winding number’ (see e.g. Marcu 
1987). As in RY, inclusion of the non-local moves makes a substantial difference to the 
results for small systems. For the larger sizes, the difference appears to be smaller and 
the acceptance rate for this type of move becomes very low. However, we have included 
non-local moves for all sizes, performing one sweep of each of the three types of move 
in turn. 

We are interested in computing the staggered magnetisation as would be measured, 
for example, by neutron scattering or, equivalently, computed from spin-wave theory. 
However, in these situations the symmetry is spontaneously broken, which does not 
occur in finite systems. To determine the order parameter from a finite system, the 
correct procedure, in principle, is to apply a small field that couples to the staggered 
magnetisation, and to let this field tend to zero after the thermodynamic limit has been 
taken. In practice this cannot be done because the range of sizes studied is too small. 
Instead one argues, as for transitions in classical systems at finite temperature, that 
the probability distribution of the staggered magnetisation can only depend on its 
magnitude, not on its direction, because the Hamiltonian is rotationally invariant. For 
a large system the distribution will be very strongly peaked at a particular value of the 
magnitude. The effect of the symmetry-breaking field is to break the degeneracy with 
respect to direction and to make the distribution strongly peaked at the same magnitude 
it had without a field (if the field is small) and a direction determined by the field. Hence 
one can estimate mT from rotationally invariant correlation functions for a finite system 
without a field by recognising that the ground state has long-range order with a given 
magnitude of mi, but averaged over allpossible directions that this order can have. 

As an example, the staggered magnetisation can be deduced from the mean square 
staggered magnetisation, defined by 

where qc = (n, n) is the wavevector of the staggered magnetisation, x and y are the 
coordinates of a site on the lattice, and 

where E , , ~  is +1 or -1 depending on which sublattice the site ( x ,  y )  lies. The staggered 
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magnetisation can also be obtained from the correlation between spins as far apart as 
possible on the lattice, i.e. 

For L + CQ, where contributions from short-range order can be neglected, both S(q,) 
and CL12 reduce to (mt)2 /3 ,  the factor of 3 appearing from the rotational invariance of 
the ground state discussed above. Hence we have 

3. Some technical aspects 

To verify that the simulations are in equilibrium, we started the simulation both from an 
ordered (NCel) state and a completely random initial state (the same at each time slice). 
For each size we did this for a (roughly) logarithmically increasing set of values of the 
number of sweeps (increasing both the equilibration sweeps and the subsequent sweeps 
where measurement takes place). For each size, we verified that the results from the 
NCel start and the random start were independent of the simulation time for the longer 
runs and, furthermore, that they agreed with each other within the statistical errors. For 
L = 8 ( N  = 128), which demanded the most computer time, we did one run with 100000 
sweeps (of each of the three types of move) for equilibrium followed by 600000 steps for 
the averaging. These were carried out both for a random and a NCel start. In addition, 
many shorter runs were performed. We performed similar sets of runs for several 
different values of A T ,  as discussed below. 

Three extrapolations have to be made to compute the value of mt in the ground state. 
Firstly, one has to let the temperature Ttend to zero. Taking into account the behaviour 
of various quantities with respect to temperature observed for the square lattice in RY, 
we have assumed that p = T-' = 10 is sufficiently large to guarantee that the results are 
independent of T. Support for this comes from the work of Barnes et a1 (1988), who find 
that the energy gap between the singlet ground state and lowest triplet excited state is 
-8.4/L for the square lattice. Hence our choice of p = 10 should be sufficiently large, 
provided the gap behaves in a similar way for the honeycomb lattice. 

Secondly, one has to take the limit A T  + 0, otherwise errors are made in the use 
of the Trotter formula equation (4). The error in calculating expectation values is 
proportional to A r 2  (Fye 1986, Suzuki 1985). To show this behaviour, we plot in figure 
3 the values of the energy for L = 4 against A r 2  together with a quadratic fit. For L = 
4, we took A r  equal to 0.20,0.15625,0.125,0.10 and 0.05; for L = 6 ,  the values of A T  
were 0.20,0.15625,0.125 and 0.10; and for L = 8 we considered A r  equal to 0.15625, 
0.125 and 0.10. In addition to these sizes we also have data obtained by exactly diag- 
onalisation the 2 x 4 lattice. 

The final extrapolation is, of course, to infinite system size. We can determine 
the form of the leading finite-size dependence by assuming that spin-wave theory is 
qualitatively correct. Standard arguments (e.g. Kittell963) then show that the transverse 
spin-spin correlation varies as k-l where k is the wavevector. Fourier transforming gives 
an r-l dependence in real space in two dimensions. It is also easy to show that the 
longitudinal correlation function varies as the square of this, i.e. r-2.  Since the ground 
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Figure 3. A plot of the energy against A s z  for the honeycomb lattice with L = 4. A quadratic 
fit to the data is also shown. 

state is rotationally invariant, the S"-S" correlation function is a linear combination of 
the longitudinal and transverse correlation functions. Hence the transverse part is 
dominant at long distances and so we have 

(3;s;)  - (m+)2/3 - 1 / Y l , .  (10) 
As a result, the leading finite-size correction to S(q,) and CL/2 varies as 1/L (RY, Huse 
1988). 

It is also useful to obtain this result in a different way. We are effectively interested 
in the difference between the Brillouin zone integrals in spin-wave theory and the 
corresponding sums that arise in calculations on a finite system. The leading finite-size 
dependence comes from the singularity in the integrand at k = 0 due to the w k spin- 
wave dispersion. Since the k = 0 point is just one out of L2 allowed k-values this 
would naively give a L-2 finite-size correction. However the contribution of a mode of 
wavevector k to S(q,) diverges as k-' ,  so the naive contribution has to be multiplied by 
the contribution of the longest wavelength spin wave that can fit in the system, i.e. the 
inverse of kmln(-L-') .  This leads to the L-' finite-size correction for S(q,) and 
CL/,. Applying the same argument to the ground-state energy yields a finite-size cor- 
rection of L-2  multiplied by the energy of the spin wave of wavevector k,,,. This gives 
an L-3 correction (Huse 1988), so the energy converges much more rapidly than the 
staggered magnetisation. 

4. Results 

First of all we present our results for the energy. The ground-state energy of the 
hexagonal lattice is plotted for several sizes in figure 4, which clearly shows the L-3 
variation. From the fit shown in the figure we obtain 

Eo = -2.178 t 0.005 (honeycomb) (11) 

in units of the interaction constant. From equation ( 2 )  we see that Eo/ENBel = 



Monte Carlo simulations of the spin-d Heisenberg 1861 

t -I 
- 2 . 1 8  

5 - 0 . 2 0  
G 

- 2 . 2 2  

0.004 0.008 0.012 

L - 3  

-2.65 1 

5 - 2 . 1 5  

ru" 

c 4 
- 2 . 8 5 1  - 

0.004 0.008 0.012 

L - 3  

Figure 4. A plot of the ground-state energy of the 
honeycomb lattice against L-3 with sizes between 
L = 4 and L = 8. A linear fit to the data is also 
shown. 

Figure 5. A plot of the ground-state energy of the 
square lattice against for sizes between L = 4 
and L = 12. The curve is a quadratic fit, which 
also passes through the data point for L = 2 (not 
shown). 

1.452 k 0.003. Our result is somewhat lower than the spin-wave value (Dimino 1988) of 
-2.144. Oitmaa and Betts (1978) found -2.112, in our units, by exact diagonalisation 
of clusters of up to 18 spins. However, they extrapolated to the thermodynamic limit 
assuming an L-* size dependence, which accounts for the discrepancy with our result. 

For the square lattice, RY quoted a ground-state energy value of -2.680 -t 0.008. 
We have since done a more careful study and show the results in figure 5. The extra- 
polation gives 

Eo = -2.680 k 0.002 (square) ( 12) 
which can be reexpressed as Eo/ENC,, = 1.340 -t 0.001. 

As for the honeycomb lattice, we believe that the result of Oitmaa and Betts (1978), 
that Eo = -2.62 -t 0.02, is somewhat high because they extrapolated assuming an L-' 
size dependence. The energy in equation (12) is consistent with thevalue -2.676 * 0.004 
obtained by Barnes et a1 (1988) but is in definite disagreement with Gross et a1 (1988) 
who find -2.669 * 0.0011. Because of this discrepancy we checked more carefully that 
the temperature was low enough in our calculations. For the square lattice we repeated 
the runs for L = 8 with AT = 0.1 and 0.05 using /3 = 25, compared with /3 = 10 used 
previously. In addition, we repeated the run for L = 12 and AT = 0.1 using /3 = 40 
compared with /3 = 15. In all cases the new results agreed with our old values to within 
the error b'ars. We are therefore confident that our calculations describe the zero- 
temperature limit. The variational estimate of Huse and Elser (1988) that Eo = -2.6552 
is clearly very close to the correct answer (less than 1% too high according to our result). 

In figure 6, we display our main results for S(q,) and CL/, for the honeycomb lattice, 
together with a quadratic fit to the data. The extrapolated values of S(q,) and CL/,, which 
should be equal, are indeed very close, the fit giving 0.0154 and 0.0166 respectively. This 
should be compared with the saturation value of h. From equation (9) we find 

mt = 0.22 k 0.03 (honeycomb) (13) 
or, in other words, 44% of the saturation value. The error was estimated from the range 
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0.12 

0.08 
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Figure 7. A plot of (triangles) and 
(squares) against L-' for the honeycomb 

lattice. The intercept is equal to mt. The curves 
are quadratic fits to the data. 

Figure 6. A plot of S(q,) (triangles) and CLjz 
(squares) against L-' for the honeycomb lattice. 
The curves are quadratic fits to the data. 

0 0.2 0.4 
L -' 

Figure 8. A plot of v m  (triangles) and 
(squares) against L-' for the square lat- 

tice. The intercept is equal to m'. The curves are 
quadratic fits to the data. 

of quadratic fits which gave a reasonable description of the data. Interestingly, our value 
for mp agrees, within the error bars, with the spin-wave estimate (Dimino 1988) of 0.242. 
We will comment on this further in the conclusions below. Our extrapolated value of 
S(q,) disagrees with the Oitmaa and Betts (1978) prediction of 0.054 k 0.003 because 
they used an L-' extrapolation. Furthermore, they omitted the factor of 3 in equation 
(9) which determines mi in terms of S(q,). Our value of mt is, as expected, lower than 
the corresponding for the square lattice 

m' = 0.30 k 0.02 (square) (14) 
(60% of the saturation value 

We have also plotted & and q, which give mi directly, against 1/15 and 
show the results for the honeycomb lattice in figure 7. The extrapolated value of 
0.235 2 0.028 is close to the result in equation (13) obtained by extrapolating the square 

iven by RY. 
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Figure 9. A plot of the data of RY for S(q,) (tri- 
angles) and CLI2 (squares) for the square lattice 
against L-’I2. Unlike Miyashita (1988), we are 
unable to fit our data to aL-”(l + b / N ) ,  with 
x close to t and the curves shown are fits to 
aL-’12(1 + b/N + c/Nz) .  

Figure 10. The probability distribution of the stag- 
gered magnetisation, st, in the ground state of 
the honeycomb lattice for L = 8 and AT = 0.125. 
Since the distribution is symmetric we only show 
the region for st positive. 

of this quantity. For comparison we present the analogous plot for the square lattice in 
figure 8, using the data of RY. The extrapolated value of 0.308 f 0.015 agrees well with 
the earlier estimate given by RY of mi = 0.30 f 0.02. Given the uncertainties in the 
extrapolations, which are hard to estimate reliably, we do not feel that there is any 
significance in the difference between the results for the square lattice of RY and those 
of Tang and Hirsch (1988), who find 0.25 2 0.03. In a very careful study, Gross e f  a1 
(1988) find mt = 0.285 f 0.015 in agreement with RY. The numerical results of Horsch 
and von der Linden (1988) are consistent with RY but their quotedvalue for mt is different 
because they omit the factor of 3 in equation (9), for reasons which are unclear to us. 

In contrast to our conclusions, Miyashita (1988) has suggested, on the basis of data 
for S(qc) for the square lattice with sizes up to L = 10, that S(qc) vanishes as L-O 48 as 
L + 30. To investigate this possibility, we plot in figure 9 the data of RY for the square 
lattice against l/a. We see that our results for CL12, apparently not calculated by 
Miyashita, would have an ‘S’-shaped curve if the data is really extrapolating to zero in 
the thermodynamic limit. We feel that this is unlikely and note further that there is no 
theoretical reason for the L-’12 behaviour, unlike our extrapolation which is based on 
spin-wave theory. We shall discuss this further in the conclusions below. 

We commented above that the ground state has a fixed magnitude of the staggered 
magnetisation (at least for large systems) but that all directions are averaged over. To 
illustrate this directly, we plot in figure 10, the distribution of the z-component of the 
staggered spin, P(s’), where st, the staggered spin per site, is defined by st = 
N-’ Z, sf. If the ground state has long-range order, this should be a uniform distribution, 
since it is simply the distribution of cos 6 over a sphere. The plot clearly shows a 
rectangular distribution, with some finite-size rounding, and no evidence for peaking at 
small values of st, which would be expected if mt were zero. Note that S(q,) is just the 
second moment of P(s’). We have also obtained similar results for the square lattice. 
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Similar results and conclusions for the distribution of the order parameter have also 
been reached by Tang and Hirsch (1988). 

5. Conclusions 

We have shown that the staggered magnetisation in the spin4 antiferromagnet on the 
honeycomb lattice is finite and is, furthermore, quite close to the spin-wave value. 
Similar results have been found earlier by RY for the square lattice. Our numerical values 
are given in equations (13) and (14) for the honeycomb and square lattices respectively. 

An interesting question, which these results raise, is why spin-wave theory should 
be so accurate. Oguchi (1960) showed that the next term in the spin-wave expansion 
vanishes for any lattice with inversion symmetry, such as the square lattice, though 
the correction will be non-zero for the honeycomb lattice. Our results show that the 
coefficient of this term for the honeycomb lattice must be small, as must the coefficient 
of the next-order term for both lattices. It would be clearly useful to investigate the 
expansion in more detail, to understand why the leading term works so well. 

Our quoted errors assume that the leading finite-size correction to S(q,) and CL12 
varies as L-l, which comes from the spin-wave prediction of an r-l decay of the staggered 
spin correlations to their asymptotic value, see equation (10). We cannot completely 
rule out the possibility that these correlations tend to zero at infinite distance with some 
small inverse power of L. However, one would then need substantial corections to this 
asymptotic behaviour to force the fit through the data. There is, however, no theoretical 
reason for such behaviour as far as we can see. Even in a situation where quantum 
fluctuations drive the system to the zero-temperature critical point described by Chak- 
ravarty et a1 (1988), the correlations still decay to zero like r-' (neglecting the small 
exponent 11 of the three-dimensional classical Heisenberg magnet). Hence our extra- 
polation with size would still be correct. Actually, as mentioned in reference [15] of 
Chakravarty et a1 (1988), the model they use does not distinguish between integer and 
half-integer spin, so there is some question as to whether it gives the correct description of 
the quantum-disordered phase. Hence this argument cannot be regarded as completely 
sound. Nonetheless, there is, to our knowledge, no theory which predicts a lack of long- 
range order and which is compatible with our data. We therefore feel reasonably 
confident that our extrapolations are correct. 

We also note that additional support for the accuracy of spin-wave theory comes 
from the good agreement between the measurements of Endoh et a1 (1988) on the 
magnetic correlation length of La2Cu04 and the theory of Chakravarty et a1 (1988). 
Furthermore the largest staggered magnetisations observed in La2Cu04 are close to the 
spin-wave estimate of 5 0 . 6 ~ ~  per site (Shirane et a1 1987, Vaknin et a1 1987). 

Finally, although we have argued that the RVB state is not the ground state of the 
square or honeycomb lattices, it is possible that RVB states with relatively low energy 
may give a contribution to the low-temperature thermodynamic properties. This is 
currently under investigation. 
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